A Polynomial Time Algorithm for Longest Paths in Biconvex Graphs

نویسندگان

  • Esha Ghosh
  • N. S. Narayanaswamy
  • C. Pandu Rangan
چکیده

The longest path problem is the problem of finding a simple path of maximum length in a graph. Polynomial solutions for this problem are known only for special classes of graphs, while it is NP-hard on general graphs. In this paper we are proposing a O(n) time algorithm to find the longest path on biconvex graphs, where n is the number of vertices of the input graph. We have used Dynamic Programming ap-

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Approximating Longest Directed Paths and Cycles

We investigate the hardness of approximating the longest path and the longest cycle in directed graphs on n vertices. We show that neither of these two problems can be polynomial time approximated within n1-ε for any ε > 0 unless P = NP. In particular, the result holds for digraphs of constant bounded outdegree that contain a Hamiltonian cycle. Assuming the stronger complexity conjecture that S...

متن کامل

Polynomial-time algorithms for the Longest Induced Path and Induced Disjoint Paths problems on graphs of bounded mim-widthh

We give the first polynomial-time algorithms on graphs of bounded maximum induced matching width (mim-width) for problems that are not locally checkable. In particular, we give nO(w)-time algorithms on graphs of mim-width at most w, when given a decomposition, for the following problems: Longest Induced Path, Induced Disjoint Paths and H-Induced Topological Minor for fixed H. Our results imply ...

متن کامل

Polynomial-Time Algorithms for the Longest Induced Path and Induced Disjoint Paths Problems on Graphs of Bounded Mim-Width

We give the first polynomial-time algorithms on graphs of bounded maximum induced matching width (mim-width) for problems that are not locally checkable. In particular, we give nO(w)-time algorithms on graphs of mim-width at most w, when given a decomposition, for the following problems: Longest Induced Path, Induced Disjoint Paths and H-Induced Topological Minor for fixed H. Our results imply ...

متن کامل

On Shortest Disjoint Paths in Planar Graphs

For a graph G and a collection of vertex pairs {(s1, t1), . . . , (sk, tk)}, the k disjoint paths problem is to find k vertex-disjoint paths P1, . . . , Pk, where Pi is a path from si to ti for each i = 1, . . . , k. In the corresponding optimization problem, the shortest disjoint paths problem, the vertex-disjoint paths Pi have to be chosen such that a given objective function is minimized. We...

متن کامل

Computing and Counting the Longest Paths on Circular-Arc Graphs in Polynomial Time

The longest path problem asks for a path with the largest number of vertices in a given graph. In contrast to the Hamiltonian path problem, until recently polynomial algorithms for the longest path problem were known only for small graph classes, such as trees. Recently, a polynomial algorithm for this problem on interval graphs has been presented in [20] with running time O(n) on a graph with ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011